Architecture-dependent Execution Time of Shor’s Algorithm

نویسندگان

  • RODNEY VAN METER
  • KOHEI M. ITOH
  • THADDEUS D. LADD
چکیده

We show how the execution time of algorithms on quantum computers depends on the architecture of the quantum computer, the choice of algorithms (including subroutines such as arithmetic), and the “clock speed” of the quantum computer. The primary architectural features of interest are the ability to execute multiple gates concurrently, the number of application-level qubits available, and the interconnection network of qubits. We analyze Shor’s algorithm for factoring large numbers in this context. Our results show that, if arbitrary interconnection of qubits is possible, a machine with an application-level clock speed of as low as one-third of a (possibly encoded) gate per second could factor a 576-bit number in under one month, potentially outperforming a large network of classical computers. For nearest-neighbor-only architectures, a clock speed of around twenty-seven gates per second is required.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drug Discovery Acceleration Using Digital Microfluidic Biochip Architecture and Computer-aided-design Flow

A Digital Microfluidic Biochip (DMFB) offers a promising platform for medical diagnostics, DNA sequencing, Polymerase Chain Reaction (PCR), and drug discovery and development. Conventional Drug discovery procedures require timely and costly manned experiments with a high degree of human errors with no guarantee of success. On the other hand, DMFB can be a great solution for miniaturization, int...

متن کامل

Faster Quantum Number Factoring via Circuit Synthesis

A major obstacle to implementing Shor’s quantum number-factoring algorithm is the large size of modular-exponentiation circuits. We reduce this bottleneck by customizing reversible circuits for modular multiplication to individual runs of Shor’s algorithm. Our circuit-synthesis procedure exploits spectral properties of multiplication operators and constructs optimized circuits from the traces o...

متن کامل

Efficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems

Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...

متن کامل

QoS-Based web service composition based on genetic algorithm

Quality of service (QoS) is an important issue in the design and management of web service composition. QoS in web services consists of various non-functional factors, such as execution cost, execution time, availability, successful execution rate, and security. In recent years, the number of available web services has proliferated, and then offered the same services increasingly. The same web ...

متن کامل

Quantum algorithms for computing short discrete logarithms and factoring RSA integers

In this paper we generalize the quantum algorithm for computing short discrete logarithms previously introduced by Eker̊a [2] so as to allow for various tradeoffs between the number of times that the algorithm need be executed on the one hand, and the complexity of the algorithm and the requirements it imposes on the quantum computer on the other hand. Furthermore, we describe applications of al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005